Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


Activation of H(+)-ATPase by glucose in Saccharomyces cerevisiae involves a membrane serine protease.

Campetelli AN, Monesterolo NE, Previtali G, Santander VS, Amaiden MR, Arce CA, Valdez-Taubas J, Casale CH
Biochimica et biophysica acta


BACKGROUND: Glucose induces H(+)-ATPase activation in Saccharomyces cerevisiae. Our previous study showed that (i) S. cerevisiae plasma membrane H(+)-ATPase forms a complex with acetylated tubulin (AcTub), resulting in inhibition of the enzyme activity; (ii) exogenous glucose addition results in the dissociation of the complex and recovery of the enzyme activity. METHODS: We used classic biochemical and molecular biology tools in order to identify the key components in the mechanism that leads to H(+)-ATPase activation after glucose treatment. RESULTS: We demonstrate that glucose-induced dissociation of the complex is due to pH-dependent activation of a protease that hydrolyzes membrane tubulin. Biochemical analysis identified a serine protease with a kDa of 35-40 and an isoelectric point between 8 and 9. Analysis of several knockout yeast strains led to the detection of Lpx1p as the serine protease responsible of tubulin proteolysis. When lpx1Δ cells were treated with glucose, tubulin was not degraded, the AcTub/H(+)-ATPase complex did not undergo dissociation, and H(+)-ATPase activation was significantly delayed. CONCLUSION: Our findings indicate that the mechanism of H(+)-ATPase activation by glucose involves a decrease in the cytosolic pH and consequent activation of a serine protease that hydrolyzes AcTub, accelerating the process of the AcTub/H(+)-ATPase complex dissociation and the activation of the enzyme. GENERAL SIGNIFICANCE: Our data sheds light into the mechanism by which acetylated tubulin dissociates from the yeast H(+)-ATPase, identifying a degradative step that remained unknown. This finding also proposes an indirect way to pharmacologically regulate yeast H(+)-ATPase activity and open the question about mechanistic similarities with other higher eukaryotes.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.