NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

OST4 is a subunit of the mammalian oligosaccharyltransferase required for efficient N-glycosylation.

Authors:
Dumax-Vorzet A, Roboti P, High S
Affiliation:
Journal:
Journal of cell science

Abstract

The eukaryotic oligosaccharyltransferase (OST) is a membrane-embedded protein complex that catalyses the N-glycosylation of nascent polypeptides in the lumen of the endoplasmic reticulum (ER), a highly conserved biosynthetic process that enriches protein structure and function. All OSTs contain a homologue of the catalytic STT3 subunit, although in many cases this is assembled with several additional components that influence function. In S. cerevisiae, one such component is Ost4p, an extremely small membrane protein that appears to stabilise interactions between subunits of assembled OST complexes. OST4 has been identified as a putative human homologue, but to date neither its relationship to the OST complex, nor its role in protein N-glycosylation, have been directly addressed. Here, we establish that OST4 is assembled into native OST complexes containing either the catalytic STT3A or STT3B isoforms. Co-immunoprecipitation studies suggest that OST4 associates with both STT3 isoforms and with ribophorin I, an accessory subunit of mammalian OSTs. These presumptive interactions are perturbed by a single amino acid change in the transmembrane region of OST4. Using siRNA knockdowns and native gel analysis, we show that OST4 plays an important role in maintaining the stability of native OST complexes. Hence, upon OST4 depletion well-defined OST complexes are partially destabilised and a novel ribophorin I-containing subcomplex can be detected. Strikingly, cells depleted of either OST4 or STT3A show a remarkably similar defect in the N-glycosylation of endogenous prosaposin. We conclude that OST4 most likely promotes co-translational N-glycosylation by stabilising STT3A-containing OST isoforms.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X