Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


Functional effects of KCNQ K(+) channels in airway smooth muscle.

Evseev AI, Semenov I, Archer CR, Medina JL, Dube PH, Shapiro MS, Brenner R
Frontiers in physiology


KCNQ (Kv7) channels underlie a voltage-gated K(+) current best known for control of neuronal excitability, and its inhibition by Gq/11-coupled, muscarinic signaling. Studies have indicated expression of KCNQ channels in airway smooth muscle (ASM), a tissue that is predominantly regulated by muscarinic receptor signaling. Therefore, we investigated the function of KCNQ channels in rodent ASM and their interplay with Gq/11-coupled M3 muscarinic receptors. Perforated-patch clamp of dissociated ASM cells detected a K(+) current inhibited by the KCNQ antagonist, XE991, and augmented by the specific agonist, flupirtine. KCNQ channels begin to activate at voltages near resting potentials for ASM cells, and indeed XE991 depolarized resting membrane potentials. Muscarinic receptor activation inhibited KCNQ current weakly (~20%) at concentrations half-maximal for contractions. Thus, we were surprised to see that KCNQ had no affect on membrane voltage or muscle contractility following muscarinic activation. Further, M3 receptor-specific antagonist J104129 fumarate alone did not reveal KCNQ effects on muscarinic evoked depolarization or contractility. However, a role for KCNQ channels was revealed when BK-K(+) channel activities are reduced. While KCNQ channels do control resting potentials, they appear to play a redundant role with BK calcium-activated K(+) channels during ASM muscarinic signaling. In contrast to effect of antagonist, we observe that KCNQ agonist flupirtine caused a significant hyperpolarization and reduced contraction in vitro irrespective of muscarinic activation. Using non-invasive whole animal plethysmography, the clinically approved KCNQ agonist retigabine caused a transient reduction in indexes of airway resistance in both wild type and BK β1 knockout (KO) mice treated with the muscarinic agonist. These findings indicate that KCNQ channels can be recruited via agonists to oppose muscarinic evoked contractions and may be of therapeutic value as bronchodilators.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.