Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


Ligand-gated currents of alpha and beta ganglion cells in the cat retinal slice.

Cohen ED, Zhou ZJ, Fain GL
Journal of neurophysiology


1. We studied the receptor pharmacology of the ligand-gated currents of ON- and OFF- alpha and beta ganglion cells in a cat retinal slice preparation using the whole cell recording variation of the patch-clamp technique. Cat retinal slices were cut in N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer and incubated in a bicarbonate-buffered solution. Ganglion cells were voltage clamped at -70 mV in HEPES-buffered Ringer solution. The pipette solution contained a low concentration of Cl- to distinguish mixed cationic from Cl(-)-mediated conductances, and Lucifer yellow (0.5%) was included for identification of the cell type. 2. In Ringer solution containing 1.2 mM Mg2+, current-voltage (I-V) curves of responses to the excitatory amino acid agonist (EAA) N-methyl-D-aspartate (NMDA) (200 microM) revealed a J-shaped function. In Mg(2+)-free Ringer solution containing 200 microM Cd2+ to block synaptic transmission, NMDA (200 microM) elicited an inward current 5-8 times larger at -70 mV. In both conditions I-V curves of the NMDA-induced currents reversed near 0 mV. These results suggest that there are NMDA EAA receptors present directly on the dendrites of alpha and beta ganglion cells. Responses to NMDA were blocked by +/- 2-amino-7-phosphonoheptanoic acid (AP7) (200 microM). 3. In Ringer solution containing 200-1,000 microM Cd2+ to block synaptic transmission, both ON- and OFF- alpha and beta cells responded to kainic acid (10-50 microM), alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) (20-70 microM), and quisqualic acid (0.1-30 microM) with inward currents that reversed near 0 mV. These responses were blocked by the quinoxaline EAA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10 microM). The metabotropic agonists 1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) (25 microM) and L-2-amino-4-phosphonobutyric acid (L-APB) (50 microM) and L-2-amino-4-phosphonobutyric acid (L-APB) (50 microM) in the presence of Cd2+ evoked little or no response for all cells tested. 4. In the presence of Cd2+, alpha and beta cells responded to gamma-amino-butyric acid (GABA) (200 microM) and glycine (200 microM) with inward currents that reversed near -35 mV, the calculated chloride equilibrium potential Ecl. Responses to GABA and glycine were both strongly desensitizing. (+)Bicuculline methyl chloride (20 microM) blocked an average of 90% of the inward current evoked by 200 microM GABA on all ganglion cell types.(ABSTRACT TRUNCATED AT 400 WORDS)

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.