Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice.

Kobayashi K, Morita S, Sawada H, Mizuguchi T, Yamada K, Nagatsu I, Hata T, Watanabe Y, Fujita K, Nagatsu T
The Journal of biological chemistry


Tyrosine 3-hydroxylase (TH, EC catalyzes the first and rate-limiting step of the catecholamine biosynthetic pathway in the nervous and endocrine systems. The TH locus was disrupted in mouse embryonic stem cells by homologous recombination. Mice heterozygous for the TH mutation were apparently normal. In these mice, TH activity in the embryos and adult tissues was less than 50% of the wild-type values, but the catecholamine level was decreased only moderately in the developing animals and was maintained normally at adulthood, suggesting the presence of a regulatory mechanism for ensuring the proper catecholamine level during animal development. In contrast, the homozygous mutant mice died at a late stage of embryonic development or shortly after birth. Both TH mRNA and enzyme activity were lacking in the homozygous mutants, which thus explained the severe depletion of catecholamines. These changes, however, did not affect gross morphological development of the cells that normally express high catecholamine levels. Analysis of electrocardiograms of surviving newborn mutants showed bradycardia, suggesting an alteration of cardiac functions in the homozygous mice that may lead to the lethality of this mutation. In addition, transfer of a human TH transgene into the homozygous mice corrected the mutant phenotype, showing recovery of TH activity by expression of the human enzyme. These results indicate that TH is essential for survival of the animals during the late gestational development and after birth.

MGI Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.