We are currently experiencing intermittent outages following SDSC Maintenance, we apologize for any inconvenience.

NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products.

Authors:
Sallusto F, Cella M, Danieli C, Lanzavecchia A
Affiliation:
Journal:
The Journal of experimental medicine

Abstract

We have previously demonstrated that human peripheral blood low density mononuclear cells cultured in granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4 develop into dendritic cells (DCs) that are extremely efficient in presenting soluble antigens to T cells. To identify the mechanisms responsible for efficient antigen capture, we studied the endocytic capacity of DCs using fluorescein isothiocyanate-dextran, horseradish peroxidase, and lucifer yellow. We found that DCs use two distinct mechanisms for antigen capture. The first is a high level of fluid phase uptake via macropinocytosis. In contrast to what has been found with other cell types, macropinocytosis in DCs is constitutive and allows continuous internalization of large volumes of fluid. The second mechanism of capture is mediated via the mannose receptor (MR), which is expressed at high levels on DCs. At low ligand concentrations, the MR can deliver a large number of ligands to the cell in successive rounds. Thus, while macropinocytosis endows DCs with a high capacity, nonsaturable mechanism for capture of any soluble antigen, the MR gives an extra capacity for antigen capture with some degree of selectivity for non-self molecules. In addition to their high endocytic capacity, DCs from GM-CSF + IL-4-dependent cultures are characterized by the presence of a large intracellular compartment that contains high levels of class II molecules, cathepsin D, and lysosomal-associated membrane protein-1, and is rapidly accessible to endocytic markers. We investigated whether the capacity of DCs to capture and process antigen could be modulated by exogenous stimuli. We found that DCs respond to tumor necrosis factor alpha, CD40 ligand, IL-1, and lipopolysaccharide with a coordinate series of changes that include downregulation of macropinocytosis and Fc receptors, disappearance of the class II compartment, and upregulation of adhesion and costimulatory molecules. These changes occur within 1-2 d and are irreversible, since neither pinocytosis nor the class II compartment are recovered when the maturation-inducing stimulus is removed. The specificity of the MR and the capacity to respond to inflammatory stimuli maximize the capacity of DCs to present infectious non-self antigens to T cells.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X