NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Three residues in the common beta chain of the human GM-CSF, IL-3 and IL-5 receptors are essential for GM-CSF and IL-5 but not IL-3 high affinity binding and interact with Glu21 of GM-CSF.

Authors:
Woodcock JM, Zacharakis B, Plaetinck G, Bagley CJ, Qiyu S, Hercus TR, Tavernier J, Lopez AF
Affiliation:
Journal:
The EMBO journal

Abstract

The beta subunit (beta c) of the receptors for human granulocyte macrophage colony stimulating factor (GM-CSF), interleukin-3 (IL-3) and interleukin-5 (IL-5) is essential for high affinity ligand-binding and signal transduction. An important feature of this subunit is its common nature, being able to interact with GM-CSF, IL-3 and IL-5. Analogous common subunits have also been identified in other receptor systems including gp130 and the IL-2 receptor gamma subunit. It is not clear how common receptor subunits bind multiple ligands. We have used site-directed mutagenesis and binding assays with radiolabelled GM-CSF, IL-3 and IL-5 to identify residues in the beta c subunit involved in affinity conversion for each ligand. Alanine substitutions in the region Tyr365-Ile368 in beta c showed that Tyr365, His367 and Ile368 were required for GM-CSF and IL-5 high affinity binding, whereas Glu366 was unimportant. In contrast, alanine substitutions of these residues only marginally reduced the conversion of IL-3 binding to high affinity by beta c. To identify likely contact points in GM-CSF involved in binding to the 365-368 beta c region we used the GM-CSF mutant eco E21R which is unable to interact with wild-type beta c whilst retaining full GM-CSF receptor alpha chain binding. Eco E21R exhibited greater binding affinity to receptor alpha beta complexes composed of mutant beta chains Y365A, H367A and I368A than to those composed of wild-type beta c or mutant E366A. These results (i) identify the residues Tyr365, His367 and Ile368 as critical for affinity conversion by beta c, (ii) show that high affinity binding of GM-CSF and IL-5 can be dissociated from IL-3 and (iii) suggest that Tyr365, His367 and Ile368 in beta c interact with Glu21 of GM-CSF.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X