Neuroscience Information Framework

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

A search for proteins that interact genetically with histone H3 and H4 amino termini uncovers novel regulators of the Swe1 kinase in Saccharomyces cerevisiae.

Authors:
Ma XJ, Lu Q, Grunstein M
Affiliation:
Journal:
Genes & development

Abstract

In a genetic screen for second-site mutations that are lethal in combination with a deletion of the amino terminus of histone H3, we have uncovered three new gene products that regulate the Saccharomyces cerevisiae Swe1 kinase. The Swe1 protein kinase phosphorylates tyrosine residue 19 of Cdc28 and inhibits its activity. One histone synthetic-lethal gene, HSL1, encodes a putative protein kinase that has high sequence and functional homology to fission yeast cdr1/nim1, an inhibitory kinase of wee1. Another gene, HSL7, is a novel negative regulator of Swe1 function. Sequences similar to Hsl7 exist in Caenorhabditis elegans and humans. In addition, we have isolated a dosage-dependent suppressor, OSS1, of hsl1 and hsl7. OSS1 is important for the transcriptional repression of SWE1 and CLN2 in G2. Mutations in HSL1 and HSL7 therefore cause hyperactivity of the Swe1 kinase, which in turn decreases mitotic Cdc28 kinase activity. Moreover, HSL5 is identical to CDC28, further suggesting that it is the decreased Cdc28 kinase activity in these hsl mutants that causes lethality in the histone mutant background. Because neither HSL1 nor HSL7 is essential in yeast, and histone transcription is unaffected by the hsl5/cdc28 mutation, it is unlikely that synthetic lethality results from reduced transcription of HSL1 and HSL7 caused by histone mutations, or from reduced histone transcription when Cdc28 kinase activity is compromised. We suggest that these cell cycle regulators function in a pathway upstream of both histones H3 and H4, thereby modulating histone function in the cell cycle.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X