NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Impaired cerebellar synaptic plasticity and motor performance in mice lacking the mGluR4 subtype of metabotropic glutamate receptor.

Authors:
Pekhletski R, Gerlai R, Overstreet LS, Huang XP, Agopyan N, Slater NT, Abramow-Newerly W, Roder JC, Hampson DR
Affiliation:
Journal:
The Journal of neuroscience : the official journal of the Society for Neuroscience

Abstract

The application of the glutamate analog L-2-amino-4-phosphonobutyric acid (L-AP4) to neurons produces a suppression of synaptic transmission. Although L-AP4 is a selective ligand at a subset of metabotropic glutamate receptors (mGluRs), the precise physiological role of the L-AP4-activated mGluRs remains primarily unknown. To provide a better understanding of the function of L-AP4 receptors, we have generated and studied knockout (KO) mice lacking the mGluR4 subtype of mGluR that displays high affinity for L-AP4. The mGluR4 mutant mice displayed normal spontaneous motor activity and were unimpaired on the bar cross test, indicating that disruption of the mGluR4 gene did not cause gross motor abnormalities, impairments of novelty-induced exploratory behaviors, or alterations in fine motor coordination. However, the mutant mice were deficient on the rotating rod motor-learning test, suggesting that mGluR4 KO mice may have an impaired ability to learn complex motor tasks. Patch-clamp and extracellular field recordings from Purkinje cells in cerebellar slices demonstrated that L-AP4 had no effect on synaptic responses in the mutant mice, whereas in the wild-type mice 100 microM L-AP4 produced a 23% depression of synaptic responses with an EC50 of 2.5 microM. An analysis of presynaptic short-term synaptic plasticity at the parallel fiber-->Purkinje cell synapse demonstrated that paired-pulse facilitation and post-tetanic potentiation were impaired in the mutant mice. In contrast, long-term depression (LTD) was not impaired. These results indicate that an important function of mGluR4 is to provide a presynaptic mechanism for maintaining synaptic efficacy during repetitive activation. The data also suggest that the presence of mGluR4 at the parallel fiber-->Purkinje cell synapse is required for maintaining normal motor function.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X