Neuroscience Information Framework

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Keratin 12-deficient mice have fragile corneal epithelia.

Authors:
Kao WW, Liu CY, Converse RL, Shiraishi A, Kao CW, Ishizaki M, Doetschman T, Duffy J
Affiliation:
Journal:
Investigative ophthalmology & visual science

Abstract

PURPOSE: Expression of the K3-K12 keratin pair characterizes the corneal epithelial differentiation. To elucidate the role of keratin 12 in the maintenance of corneal epithelium integrity, the authors bred mice deficient in keratin 12 by gene-targeting techniques. METHODS: One allele of murine Krt1.12 gene was ablated in the embryonic stem cell line, E14.1, by homologous recombination with a DNA construct in which the DNA element between intron 2 and exon 8 of the keratin 12 gene was replaced by a neo-gene. The homologous recombinant embryonic stem cells were injected to mouse blastocysts, and germ lines of chimeras were obtained. The corneas of heterozygous and homozygous mice were characterized by clinical observations using stereomicroscopy, histology with light and electron microscopy, Western immunoblot analysis, immunohistochemistry, in situ hybridization, and Northern hybridization. RESULTS: The heterozygous mice (+/-) one allele of the Krt1.12 gene appear normal and do not develop any clinical manifestations (e.g., corneal epithelial defects). Homozygous mice (-/-) develop normally and suffer mild corneal epithelial erosion. Their corneal epithelia are fragile and can be removed by gentle rubbing of the eyes or brushing with a Microsponge. The corneal epithelium of the homozygote (-/-) does not express keratin 12 as judged by immunohistochemistry, Western immunoblot analysis with epitope-specific anti-keratin 12 antibodies, Northern hybridization with 32P-labeled keratin 12 cDNA, and in situ hybridization with an anti-sense keratin 12 riboprobe. Light and electron microscopy revealed subtle abnormalities in the corneal epithelia of -/- mice (i.e., a decrease in number of cell layers) and cytolysis of superficial cells, but the number of hemidesmosomes and desmosomes are normal in basal and suprabasal cells. The number of keratin intermediate filaments in basal and suprabasal corneal epithelial cells in -/- mice decreases, and they appear as dense bundles. This morphology is similar to that of keratin intermediate filaments in epidermal epithelial, cells but differs from that of normal corneal epithelial cells in which the keratins form fine filamentous networks. The superficial epithelial cells are devoid of keratin intermediate filaments and often detach from the corneal surface of -/- mice. CONCLUSIONS: The presence of cornea-specific K3-K12 keratin pairs is essential for the maintenance of corneal epithelium integrity.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X