NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

NFI-B3, a novel transcriptional repressor of the nuclear factor I family, is generated by alternative RNA processing.

Authors:
Liu Y, Bernard HU, Apt D
Affiliation:
Journal:
The Journal of biological chemistry

Abstract

Nuclear factor I (NFI) proteins constitute a family of sequence-specific transcription factors whose functional diversity is generated through transcription from four different genes (NFI-A, NFI-B, NFI-C, and NFI-X), alternative RNA splicing, and protein heterodimerization. Here we describe a naturally truncated isoform, NFI-B3, which is derived from the human NFI-B gene, in addition to characterizing further human NFI-B1 and NFI-B2, two differentially spliced variants previously isolated from hamster and chicken. Although NFI-B1 and NFI-B2 proteins are translated from an 8. 7-kilobase message, the mRNA for NFI-B3 has a size of only 1.8 kilobases. The NFI-B3 message originates from the failure to excise the first intron downstream of the exons encoding the DNA binding domain and subsequent processing of this transcript at an intron-internal polyadenylation signal. The translation product includes the proposed DNA binding and dimerization domain and terminates after translation of two additional "intron" encoded codons. In SL-2 cells, which are void of endogenous NFI, NFI-B3 by itself had no effect on transcriptional regulation and failed to bind DNA. Coexpression of NFI-B3 with other isoforms of the NFI-B, -C, and -X family, however, led to a strong reduction of transcriptional activation compared with the expression of these factors alone. Gel shift analysis indicated that NFI-B3 disrupts the function of other NFI proteins by reducing their DNA binding activity by heterodimer formation. The efficiency of NFI-B3 heterodimers to bind to DNA correlated with the degree of transcriptional repression. The abundance of NFI-B transcripts varied significantly between different human cell lines and tissues, suggesting a potential involvement of these factors in the complex mechanisms that generate cell type specificity.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X