Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


Characterization of the WW domain of human yes-associated protein and its polyproline-containing ligands.

Chen HI, Einbond A, Kwak SJ, Linn H, Koepf E, Peterson S, Kelly JW, Sudol M
The Journal of biological chemistry


We had previously identified the WW domain as a novel globular domain that is composed of 38-40 semiconserved amino acids and is involved in mediating protein-protein interaction. The WW domain is shared by proteins of diverse functions including structural, regulatory, and signaling proteins in yeast, nematode, and mammals. Functionally it is similar to the Src homology 3 domain in that it binds polyproline ligands. By screening a 16-day mouse embryo expression library, we identified two putative ligands of the WW domain of Yes kinase-associated protein which we named WW domain-binding proteins 1 and 2. These proteins interacted with the WW domain via a short proline-rich motif with the consensus sequence of four consecutive prolines followed by a tyrosine. Herein, we report the cDNA cloning and characterization of the human orthologs of WW domain-binding proteins 1 and 2. The products encoded by these cDNA clones represent novel proteins with no known function. Furthermore, these proteins show no homology to each other except for a proline-rich motif. By fluorescence in situ hybridization on human metaphase chromosomes, we mapped the human genes for WW domain-binding proteins 1 and 2 to chromosomes 2p12 and 17q25, respectively. In addition, using site-directed mutagenesis, we determined which residues in the WW domain of Yes kinase-associated protein are critical for binding. Finally, by synthesizing peptides in which the various positions of the four consecutive proline-tyrosine motif and the five surrounding residues were replaced by all possible amino acid residues, we further elucidated the binding requirements of this motif.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.