Neuroscience Information Framework

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Loss of teratogenic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice lacking the Ah (dioxin) receptor.

Authors:
Mimura J, Yamashita K, Nakamura K, Morita M, Takagi TN, Nakao K, Ema M, Sogawa K, Yasuda M, Katsuki M, Fujii-Kuriyama Y
Affiliation:
Journal:
Genes to cells : devoted to molecular & cellular mechanisms

Abstract

BACKGROUND: The aryl hydrocarbon receptor (AhR or dioxin receptor) is a ligand-activated transcription factor that is considered to mediate pleiotropic biological responses such as teratogenesis, tumour promotion, epithelial hyperplasia and the induction of drug-metabolizing enzymes to environmental contaminants usually represented by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In contrast to the role of AhR in the regulatory mechanism of xenobiotic-metabolizing enzymes, there is no direct proof that the AhR is involved in the teratogenic effects of TCDD. RESULTS: To gain insight into the physiological and teratogenic role of the AhR, we have used gene targeting in mice to disrupt the murine Ahr gene by homologous recombination. Ahr-null mice were viable and fertile and were apparently normal at birth, but displayed a slightly slower growth rate than wild-type mice for the first few weeks of life. When pregnant dams were administered with TCDD by gavage, at a dose of 40 microg/kg body weight at gestation day 12.5, none of the Ahr-null mutant foetuses were sensitive to the teratogenic effects of TCDD, although almost all wild-type foetuses suffered from cleft palate and hydronephrosis. In heterozygous Ahr+/- genotypes, nearly all foetuses suffered from hydronephrosis in response to TCDD treatment, while haplo-insufficiency was observed in the incidence of cleft palate. CONCLUSION: These results clearly show that the AhR is involved in the malformation of the palate and kidney in mouse embryos caused by TCDD and suggests that the mechanism of its involvement differs between the cleft palate and hydronephrosis.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X