Neuroscience Information Framework

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Syk activation is required for spreading and H2O2 release in adherent human neutrophils.

Authors:
Fernandez R, Suchard SJ
Affiliation:
Journal:
Journal of immunology (Baltimore, Md. : 1950)

Abstract

Chemoattractant-stimulated polymorphonuclear leukocytes (PMNs) that are adherent to extracellular matrix proteins exhibit a massive, sustained respiratory burst that requires cell spreading. However, the signaling pathways culminating in PMN spreading are not well characterized. Studies showing that protein tyrosine phosphorylation increases with PMN spreading suggest that phosphorylation is critical for this process. In the present study, we observed increased tyrosine phosphorylation of both focal adhesion kinase and Syk in FMLP-activated PMNs that had been plated onto fibrinogen; an increase in Syk activity, but not focal adhesion kinase activity, was apparent. The time course of Syk phosphorylation correlated with the initiation of cell spreading and H2O2 release. Pretreatment of PMNs with piceatannol, a Syk-selective inhibitor, blocked Syk activity, cell spreading, and H2O2 release, indicating that Syk activity was required for the activation of adherent PMNs. Paxillin is a cytoskeletally associated protein that is also tyrosine phosphorylated during PMN spreading and H2O2 release. Paxillin phosphorylation is kinetically slower than Syk phosphorylation and is inhibited with piceatannol, suggesting that paxillin is a substrate for Syk. An analysis of Syk immunoprecipitates indicated that Syk and paxillin associate during PMN spreading. This interaction is not mediated by the src kinases Lyn and Fgr, since neither kinase coprecipitated with Syk. Syk from FMLP-activated, adherent PMNs phosphorylated paxillin-glutathione S-transferase, suggesting that paxillin is a substrate for Syk in vivo. These results indicate that PMN spreading and H2O2 release require a Syk-dependent signaling pathway leading to paxillin phosphorylation.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X