NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH.

Authors:
Luttik MA, Overkamp KM, Kötter P, de Vries S, van Dijken JP, Pronk JT
Affiliation:
Journal:
The Journal of biological chemistry

Abstract

In Saccharomyces cerevisiae, the NDI1 gene encodes a mitochondrial NADH dehydrogenase, the catalytic side of which projects to the matrix side of the inner mitochondrial membrane. In addition to this NADH dehydrogenase, S. cerevisiae exhibits another mitochondrial NADH-dehydrogenase activity, which oxidizes NADH at the cytosolic side of the inner membrane. To investigate whether open reading frames YMR145c/NDE1 and YDL 085w/NDE2, which exhibit sequence similarity with NDI1, encode the latter enzyme, NADH-dependent mitochondrial respiration was assayed in wild-type S. cerevisiae and nde deletion mutants. Mitochondria were isolated from aerobic, glucose-limited chemostat cultures grown at a dilution rate (D) of 0. 10 h-1, in which reoxidation of cytosolic NADH by wild-type cells occurred exclusively by respiration. Compared with the wild type, rates of mitochondrial NADH oxidation were about 3-fold reduced in an nde1Delta mutant and unaffected in an nde2Delta mutant. NADH-dependent mitochondrial respiration was completely abolished in an nde1Delta nde2Delta double mutant. Mitochondrial respiration of substrates other than NADH was not affected in nde mutants. In shake flasks, an nde1Delta nde2Delta mutant exhibited reduced specific growth rates on ethanol and galactose but not on glucose. Glucose metabolism in aerobic, glucose-limited chemostat cultures (D = 0.10 h-1) of an nde1Delta nde2Delta mutant was essentially respiratory. Apparently, under these conditions alternative systems for reoxidation of cytosolic NADH could replace the role of Nde1p and Nde2p in S. cerevisiae.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X