NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation.

Authors:
Duprez E, Saurin AJ, Desterro JM, Lallemand-Breitenbach V, Howe K, Boddy MN, Solomon E, de Thé H, Hay RT, Freemont PS
Affiliation:
Journal:
Journal of cell science

Abstract

PML is a nuclear phosphoprotein that was first identified as part of a translocated chromosomal fusion product associated with acute promyelocytic leukaemia (APL). PML localises to distinct nuclear multi-protein complexes termed ND10, Kr bodies, PML nuclear bodies and PML oncogenic domains (PODs), which are disrupted in APL and are the targets for immediate early viral proteins, although little is known about their function. In a yeast two-hybrid screen, we first identified a ubiquitin-like protein named PIC1 (now known as SUMO-1), which interacts and co-localises with PML in vivo. More recent studies have now shown that SUMO-1 covalently modifies a number of target proteins including PML, RanGAP1 and IkappaBalpha and is proposed to play a role in either targeting modified proteins and/or inhibiting their degradation. The precise molecular role for the SUMO-1 modification of PML is unclear, and the specific lysine residues within PML that are targeted for modification and the PML sub-domains necessary for mediating the modification in vivo are unknown. Here we show that SUMO-1 covalently modifies PML both in vivo and in vitro and that the modification is mediated either directly or indirectly by the interaction of UBC9 with PML through the RING finger domain. Using site-specific mutagenesis, we have identified the primary PML-SUMO-1 modification site as being part of the nuclear localisation signal (Lys487 or Lys490). However SUMO-1 modification is not essential for PML nuclear localisation as only nuclear PML is modified. The sequence of the modification site fits into a consensus sequence for SUMO-1 modification and we have identified several other nuclear proteins which could also be targets for SUMO-1. We show that SUMO-1 modification appears to be dependant on the correct subcellular compartmentalisation of target proteins. We also find that the APL-associated fusion protein PML-RARA is efficiently modified in vitro, resulting in a specific and SUMO-1-dependent degradation of PML-RARA. Our results provide significant insights into the role of SUMO-1 modification of PML in both normal cells and the APL disease state.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X