Neuroscience Information Framework

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Transgenic mice harboring a full-length human mutant DRPLA gene exhibit age-dependent intergenerational and somatic instabilities of CAG repeats comparable with those in DRPLA patients.

Authors:
Sato T, Oyake M, Nakamura K, Nakao K, Fukusima Y, Onodera O, Igarashi S, Takano H, Kikugawa K, Ishida Y, Shimohata T, Koide R, Ikeuchi T, Tanaka H, Futamura N, Matsumura R, Takayanagi T, Tanaka F, Sobue G, Komure O, Takahashi M, Sano A, Ichikawa Y, Goto J, Kanazawa I
Affiliation:
Journal:
Human molecular genetics

Abstract

Dentatorubral-pallidoluysian atrophy (DRPLA) is one among an increasing number of hereditary neurodegenerative diseases determined as being caused by unstable expansion of CAG repeats coding for polyglutamine stretches. To investigate the molecular mechanisms underlying CAG repeat instability, we established three transgenic lines each harboring a single copy of a full-length human mutant DRPLA gene carrying a CAG repeat expansion. These transgenic mice exhibited an age-dependent increase (+0.31 per year) in male transmission and an age-dependent contraction (-1.21 per year) in female transmission. Similar tendencies in intergenerational instabilities were also observed in human DRPLA parent-offspring pairs. The intergenerational instabilities of the CAG repeats may be interpreted as being derived from the instability occurring during continuous cell division of spermatogonia in the male, and that occurring during the period of meiotic arrest in the female. The transgenic mice also exhibited an age-dependent increase in the degree of somatic mosaicism which occurred in a cell lineage-dependent manner, with the size range of CAG repeats being smaller in the cerebellum than in other tissues including the cerebrum, consistent with observations in autopsied tissues of DRPLA patients. Thus, the transgenic mice described in this study exhibited age-dependent intergenerational as well as somatic instabilities of expanded CAG repeats comparable with those observed in human DRPLA patients, and are therefore expected to serve as good models for investigating the molecular mechanisms of instabilities of CAG repeats.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X